



Se tiene que la derivada de la función en el punto

,
- También puede definirse alternativamente la derivada de una función en cualquier punto de su dominio de la siguiente manera:
,
. El aspecto de este límite está relacionado más con la velocidad instantánea del movimiento uniformemente acelerado que con la pendiente de la recta tangente a una curva.
No obstante su aparente diferencia, el cálculo de la derivada por definición con cualquiera de los límites anteriormente expresados, proporciona siempre el mismo resultado.
El conocimiento de todas las expresiones anteriores y su significado representan el acercamiento epistémico más completo posible en torno a la definición de derivada, y con ello, al aspecto esencial del cálculo diferencial.
No hay comentarios:
Publicar un comentario