Continuidad por la izquierda
Una función f(x) es continua por la izquierda en el punto a si existe f(a) y limx->a-f(x) = f(a) .
Definición
Continuidad por la derecha
Una función f(x) es continua por la derecha en el punto a si existe f(a) y limx->a+f(x) = f(a) .
La función anterior es continua por la izquierda en x=2, pero no por la derecha.Definición
Continuidad en un intervalo cerrado [a,b]
Una función f(x) es continua en un intervalo cerrado [a,b] si:
f es continua en a por la derecha
f es continua en b por la izquierda
f es continua en x, para todo x perteneciente al intervalo abierto (a,b)
f es continua en a por la derecha
f es continua en b por la izquierda
f es continua en x, para todo x perteneciente al intervalo abierto (a,b)
No hay comentarios:
Publicar un comentario